NASA Global Change Research Objectives

Presentation to the "Living with a Star" Meeting Goddard Space Flight Center, 11 May 2000 Pierre Morel NASA Office of Earth Science

Hierarchy of Science Questions

- How is the global Earth system changing?
- What are the primary forcings of the Earth system?
- How does the Earth system respond to natural and human-induced changes?
- What are the consequences of change in the Earth system for human civilization?
- How well can we predict the changes to the Earth system that will take place in the future?

Earth's Climate System

Forces Acting on Climate

(in Watts per meter²)

Hemispheric Responses to a 0.1% Change in Solar Irradiance

	N. Hemisphere	S. Hemisphere
ΔOLR (seasonal)	21 Watt/m ²	9 Watt/m ²
ΔT (seasonal)	11.7 K	5.1 K
$\Delta S_{ m Sun}$	1.4 Watt/m ²	
$1/4 \Delta S_{Sun} (1 - A)$	0.25 Watt/m ²	
$\Delta T_{ m Solar\ cycle}$	0.14 K	0.141 K

Response of the Earth Climate to Forcing

Chaotic nature of climate dynamics implies that the *response* to even a small external disturbance (*forcing*) may be substantial.

True for deterministic prediction (e.g. weather forecasting). Can weather ten days ahead be influenced by the flapping of a butterfly's wing (or a minor change in solar fluxes)?

The atmosphere is a powerful "weather noise" generator. The butterfly is flapping its wings inside a cement mixer.

Solar Forcing of the Earth Climate

• Direct solar forcing of the Earth radiative balance and climatic equilibrium

Reconstruct the record of past changes in solar irradiance

- Direct solar forcing of the mesosphere/stratosphere

 Ozone photochemistry

 Radiation transfer and temperature structure/stratification

 Catalytic effects (e. g. PSC's)? Triggering of "oscillations"
- Stratosphere-troposphere interactions (dynamical/radiative)

 By what mechanism can changes in the stratosphere affect

 tropospheric climate?
- Others potential "exotic" processes

Code Y Research Areas of Interest

1. Solar Radiation

Physics of solar activity and radiation output (Code S lead); Proxy indicators of past changes (Code S lead).

2. Stratospheric Chemical and Physical Responses Major Code Y program

3. Stratosphere-Troposphere Interactions

Propagation of troposphere-generated waves.
Radiative impacts of solar-induced changes in composition..

4. Direct Solar Influences on Tropospheric Processes

Requires specific hypothesis about operative process(es) and research protocol to validate or invalidate the hypothesis.

Code Y non-Global Change Research Interests

1. State of the Ionosphere (Total Electronic Content)

Perturbation of magnetic readings of the Earth interior; Forcing of magneto-telluric currents; Applications of GPS bistatic electromagnetic sounding.

2. Geomagnetism

Advanced sensors.

Guest instruments on research satellite missions